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in chemically bonded assemblies
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A number of experimental studies of condensed matter assemblies with different types
of chemical bonding will provide the focus of this work. Condensed compounds X(CH3)4,
with X¼C, Si or Ge, are the first of such assemblies; two phase boundaries in the pressure–
temperature plane being studied: melting and a solid phase boundary heralding orientational
disordering of molecules still however on a lattice. Secondly, directionally bonded d-electron
transition metals such as Ni, Pd and Nb will be treated. Here, melting is the main focus, but
the precursor transition is now the separation of a high-temperature ductile solid from a
lower temperature mechanically brittle phase. A dislocation-mediated model of these transitions
is discussed, leading into the third area of covalently bonded solids graphite and silicon. Here
topological defect models again provide the focus; both dislocations and rotation-dislocations
now being invoked. Some qualitative suggestions are made to interpret the melting curve of
graphite subjected to high pressure.

Keywords: Melting; Point and extended defects; Precursor transitions

1. Background

Melting models and/or criteria have a long history and, naturally enough, have
often focussed on simple crystals formed from almost spherical building blocks,
condensed argon being a prime example.

Here our aim is different and the focus of the present study will be on chemically
bonded assemblies. We have chosen three specific areas by way of illustration, namely:

(I) Melting and a related lower temperature phase boundary of solid X(CH3)4:
X¼C, Si, Ge as a function of pressure.

(II) Melting and associated physical properties in d-electron transition metals,
examples referred to including the body-centred-cubic (bcc) element Nb and
the face-centred-cubic structures of Pd and Ni and

(III) Melting transition in graphite, and quite briefly also in silicon.

Physics and Chemistry of Liquids

ISSN 0031-9104 print/ISSN 1029-0451 online � 2006 Taylor & Francis

DOI: 10.1080/00319100500424209

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
7
:
3
9
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



As to the related precursor cooperative phenomena referred to in the title of this

Review, in area I this concerns the phase boundary in solid X(CH3)4 which marks

the separation, prior to melting, of a low-temperature orientationally ordered molecu-

lar phase, say at a given pressure, from a phase characterized by orientational disorder,

with in both cases however the molecules still attached to the sites of a crystal lattice.
In area II, the precursor transition to melting, say in the bcc transition metal Nb

referred to above, is the so-called brittle-to-ductile transition (BDT). A rule of thumb

sometimes used by materials scientists, and detailed further below, at atmospheric

pressure, relates grossly the temperature of this transition denoted by TBDT, to a

fraction of the melting temperature Tm.
As to the third area, silicon is possibly the elemental solid in which the BDT has been

most carefully studied experimentally. However, although a BDT seems not to have

been observed at the time of writing in graphite, for presentational purposes a single

graphene layer consisting of hexagons of C atoms with sp2 hybridization provides

a most useful starting point.
With this background, let us turn immediately to area I. After some phenom-

enology, which can in fact be traced back to the very early order-disorder model

of Bragg and Williams, qualitative contact will then be made with prominent

features of the measured pressure–temperature ( p,T ) phase diagram of condensed

C(CH3)4.

2. Melting curve under pressure related to phase boundary heralding orientational

disorder of X(CH3)4 molecules in these solid compounds with X^C, Si or Ge

To gain insight into the behaviour of molecular solids under externally applied

pressure, Tozzini et al. [1] have previously discussed orientational disorder and melting,

using phenomenology plus modelling, with respect to solid halogens and H2. Here our

focus, as indicated above, will be the phase diagram of condensed X(CH3)4. Stimulation

was afforded by the study of Siringo [2], in which a d-dimensional lattice model,

incorporating some degree of frustration and therefore capable of treating some proper-

ties associated with molecular orientation in solids was proposed. Though Siringo’s

work has quite fundamental interest and for d¼ 2 is equivalent to the standard two-

dimensional Ising model, we shall here follow Tozzini et al. [1] and utilize the phenom-

enology laid down by Pople and Karasz [3: see also extension in refs [4] and [5]]. We

note that the Pople-Karasz (PK) phenomenology generalizes the Lennard-Jones and

Devonshire [6] approach to melting, based on the Bragg-Williams approximation, to

embrace the possibility of orientational disordering. Following PK, who restricted

their model to but two possible molecular orientations, separated by a suitable

energy barrier (for n orientations with n> 2, see ref [5]) we summarize using the

notation employed in the book by Ubbelohde [7], the phenomenological equations for

the two order parameters Q and S, namely

1

2Q� 1
ln

Q

1�Q

� �
¼ L½1� 2Sð1� S Þy� ð2:1Þ
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and

1

2S� 1
ln

S

1� S

� �
¼ 2Ly½1� 2Qþ 2Q2�, ð2:2Þ

Q referring to positional order/disorder with S the corresponding orientational
parameter. These two equations are characterized by the dimensionless quantities L
and y defined by [1]

L ¼ ZW=2kBT ð2:3Þ

and

y ¼ Z0W0=ZW: ð2:4Þ

Putting y to zero in equation (2.2) the melting model of Lennard-Jones and
Devonshire [6] is recovered, with the thermal energy kBTm corresponding to the melting
temperature Tm then determined solely in terms of the energy ZW which, roughly
speaking, is a diffusion energy. The other energy parameter Z0W0 constitutes the barrier
height separating different orientational arrangements: the latter quantity being the
essential new feature proposed by PK. Figure 1, redrawn from Tozzini et al. [1],
shows the reduced melting temperature tm¼ 2kB/ZW (upper line) and reduced orienta-
tional disordering temperature tc¼ 2kBTc/ZW (lower line) versus the ratio y defined in
equation (2.4). The two lines are seen to meet at y0’ 0.595 and they coincide for y>y0.
This diagram illustrates the precursor collective phenomenon: in this case the phase
boundary separating the orientationally ordered and disordered phases (reduced
temperature tc(y) in figure 1). In particular, figure 1 depicts the way in which this
lower temperature transition is interconnected with the melting transition.

Though in ref [1], modest contact was established with solid H2 and the halogens,
it has subsequently come to the author’s attention that very relevant proton magnetic
resonance (PMR) experiments are recorded in the older literature for the solid
tetramethyls already referred to. We refer here especially to the study [8] of neopentane,
C(CH3)4. Since PMR experiments measure directly appropriate energy barriers, which
are in turn related to the above phenomenological parameters Z0W0 and ZW entering
equations (2.1)–(2.4), one can estimate the parameter y for C(CH3)4 as 0.11. Also the
melting temperature for this compound is known to be 256K. The predictions of the
PK phenomenology are then in qualitative agreement with the PMR measurements
for this material. However, there is one matter of some substance which must be
mentioned here. For the above parameter value of y, the PK phenomenology predicts
the re-orientational transition to be second order, which disagrees with the experimen-
tal results of C(CH3)4 which exhibits a first-order transition. It would therefore be
of obvious interest if, for the parameters of this material one could transcend the PK
phenomenology by working out the predictions, say of the Siringo Hamiltonian [2].

Figure 1 is qualitatively in accord with the two corresponding phase boundaries
determined as a function of pressure for condensed N2, the experimental curves
being given in figure 1 of ref [8]. For earlier theoretical work on solid N2 the reader
should consult the study of LeSar [9].
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3. Melting and related phase boundaries in directionally

bonded d-electron transition metals

Motivated by the pioneering work of Kirkwood and Monroe [10], a quantitative
statistical mechanical theory of freezing [11–14] now exists. Notwithstanding this,
there has been a recent resurgence of interest in models, and also criteria, which aim
to provide insight into the regularities exhibited by empirical melting temperatures:

here our prime interest is with the d-electron bonded transition metals.
Quite recent contributions of this kind have been made by Kleinert and Jiang (KJ)

[15], Lawson [16] and Burakovsky and co-workers [17,18]. Here we shall report on
the subsequent study of Matthai and March [19] who have emphasized especially the
common features shared by the treatments of KJ and Burakovsky et al.

The most important of these shared features is that the melting transition is assumed
to be dislocation-mediated. Both KJ and Burakovsky et al., as stressed by Matthai and

March [19], are led to a result for the thermal Tm having the general shape.

kBTm ¼ �F (elastic constants) S: ð3:1Þ

In equation (3.1), � denotes the atomic volume, while S is a structure-dependent
factor. Matthai and March examined S for the d-bonded bcc and fcc transition

Figure 1. Reduced melting temperature tm ¼ 2kBTm=ZW (upper line) and reduced orientational order/
disorder temperature tc ¼ 2kBTc=ZW resulting from solutions of the simultaneous equations (2.1) and
(2.2). The dimensionless independent variable in this plot is y defined in equation (2.4). This measures the
energy barrier to orientational change in units of a characteristic activation energy for diffusion, in the
phenomenology adopted. [Redrawn from Tozzini et al. [1].]
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metals and their findings will be summarized below. However, their study assumed
the specific, and very simple, form of the function F adopted by Burakovsky and
co-workers. Though their assumptions are somewhat oversimplified compared with
those of KJ, they are thereby led to the intuitively appealing result

kBTm ¼ �GSLA ð3:2Þ

where G is the shear modulus, while SLA denotes the structure-dependent part given
by the Los Alamos (LA) group of Burakovsky et al. Table 1, extracted from the
work of Matthai and March, shows experimental results for the ratio kBTm/G�
for some transition metal elements with highly directional bonding, with G taken
from experiment both at room temperature (Gr) and just below the melting temperature
(Gm). Matthai and March [18] propose, for a wider class of 13 elemental metals, that
SLA¼ [5� 0.4] for fcc structures and [7� 1] for bcc structures.

Burakovsky et al. [17] have also used the dislocation-mediated model to estimate the
enthalpy of such an approach, and hence to obtain the latent heat of fusion Lm as an
enthalpy difference. The very specific result in their equation (45) relates Lm directly to
the melting temperature Tm times a structure-dependent factor characterized solely
by the local coordination number. As Matthai and March [19] point out, eliminating
the structure-dependent factor yields

Lm

G�
¼ constant, ð3:3Þ

where the right-hand side is now structure independent. Experimental data for the
latent heat Lm is also recorded in table 1. Figure 2, redrawn from Matthai and
March [19], shows a plot of the ratio Lm/G� entering equation (3.3) versus atomic
number Z for the wider class of 13 elements, including the 5 bcc alkali metals. With
the shear modulus G taken from experiment at (just below) the melting temperature
Tm, the ratio in equation (3.3) has a range of values falling in a narrow band to
within 20% of the mean. Matthai and March note that when the room temperature
values of G are employed, there is much more scatter.

3.1. Relation of kBTm to monovacancy formation energy Ef
IV

Materials scientists have, over some decades, frequently recorded an empirical
correlation between the thermal energy at melting, kBTm, and the monovacancy
formation energy Ef

IV. The rule of thumb emerging from such discussions is

Table 1. Experimental data for three directionally bonded transition metals (after [19]).

Element
Gr

(GPa)
Gm

(GPa)
�

(Å3)
Lm

(eV atom�1)
Tm

(K) kBTm/Gm� kBTm/Gr�

Ni 85.8 41.8 10.95 0.183 1726 5.2 2.5
Pd 48.0 37.2 14.71 0.179 1825 4.6 3.6
Nb 37.6 35.0 18.01 0.279 2741 6.0 5.6

Gr and Gm denote respectively room temperature and (just below) melting temperature shear moduli. � is atomic volume,
Tm melting temperature and Lm is latent heat of fusion.
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that Ef
IV=kBTm � 10. In contrast with the dislocation-mediated phase transition

discussed above, point defect correlations lack any such underlying mechanism, as
no experimental evidence is found for any major build-up of the (small) monovacancy
concentration as the melting temperature Tm is approached. Therefore, first-principles
theories of such a correlation between Ef

IV and kBTm have appealed to an assumed force
field. To take a specific example, Bhatia and March (BM) [20] have utilized, for close-
packed solids, a pair-potential formulation by Minchin et al. [21] for Ef

IV. Although the
BM treatment is most applicable for solid Ar already mentioned above, it leads to
a quite clear cut prediction for the ratio Ef

IV=kBTm. In particular, BM observed that
the ratio in their pair potential framework is given by

EV

kBTm
þ 1

2

B�

kBTm
¼ �

cðr ¼ 0Þ þ 2

2

� �
Tm

ð3:4Þ

where B is the bulk modulus while c(r) is the Ornstein-Zernike direct correlation
function [22]. Its Fourier transform, ~ccðqÞ say, is related to the liquid structure factor
S(q) by [22]

~ccðqÞ ¼ ½SðqÞ � 1�=SðqÞ: ð3:5Þ

The writer has argued, using work of Johnson [23], which transcends the pair potential
description employed in the model of Bhatia and March [20] yielding equation (3.4),
that the bulk modulus B should be replaced by the shear modulus when pair potentials
are replaced by a glue model [24]. A brief discussion is added in Appendix 3.1.

Figure 2. Displays the ratio G�/Lm versus atomic number where G, the shear modulus is taken from
experiment just below melting, � is the atomic volume and Lm is the measured latent heat of fusion.
[Redrawn from Matthai and March [19].].
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The correlation between kBTm and G�, via a structure-dependent factor, when

combined with Johnson’s work assuming specifically a face-centred cubic structure, is

consistent with the approximate correlation Ef
IV=kBTm ¼ constant.

3.2. Brittle-to-ductile transition in directionally bonded d-electron metals

Materials scientists over the last decade have shown considerable interest in the

interpretation of the brittle-to-ductile transition, prompted at least in part by the

important study of Khantha, Pope and Vitek [25; referred to below as KPV]. These

authors proposed to adapt the Kosterlitz-Thouless instability [26,27] to treat the

BDT, this instability being related to the unbinding of dislocation pairs. While some

changes in their original study are called for [28,29], the discussion of Sun,

Hassledine and Hirsch [30, SHH below] validates some, though not all, of the features

of the KPV proposal.
What we stress, first of all, is that KPV refer to a rule of thumb that in materials

with low initial dislocation density, the transition temperature TBDT is roughly one-

half of the melting temperature Tm. In SHH [30], referring to Ni as an example they

consider, TBDT is quoted as 895K, to be compared with the melting temperature Tm

given in table 1 above as 1726K. It is relevant to note here that the Curie temperature

of Ni is 627K; i.e. below TBDT.
Next, it is to be noted that SHH develop a cooperative mechanism for the nucleation

of subcritical shear loops driven by image stress and configurational entropy. Use of

this mechanism leads them to correlate TBDT with the shear modulus G. Invoking

then the dislocation-mediated melting formula (3.2), one has the gist of the sought-

after correlation between TBDT and Tm. Related models are analysed somewhat further

in Appendix 3.2.
Though these discussions (see also [28] and [29]) are evidently yielding further

insight into the BDT, Klein and March [31] have very recently emphasized the central

importance of rotation-dislocations or, as alternatively termed, disclinations for the

BDT. This leads naturally into the third area of chemically bonded materials to be

discussed, namely graphite and silicon.

4. Melting and brittle-to-ductile transition (BDT) in

covalently bonded crystals: graphite and silicon

4.1. Rotation-dislocations as the ‘universal ingredient’ of the BDT

Since the melting temperature Tm and the BDT temperature TBDT have been argued

in section 3 above to be intimately correlated, let us introduce immediately the

basic reason why Klein and March [31] have focussed very recently on the rotation-

dislocation, or disclination, as the ‘universal ingredient’ in the BDT.
Together with Langer and Pechenick [32], who do not however mention disclinations,

Klein and March [31] first exclude dislocations (translational) themselves as the

‘universal ingredient’ since the BDT is found experimentally in amorphous materials

as well as in many crystalline solids.
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4.2. Topological defects in graphite

The above experimental findings have motivated Klein and March [31] to focus

first on the chemical bonding (sp2) structure of graphite. They develop a picture

there relating to rotation-dislocations in terms of a perfect two-dimensional hexagonal

layer of C atoms (graphene) being thermally excited such that both pentagonal and

heptagonal defects are formed at elevated temperatures.
However, before expanding further on these arguments, it should be made clear

that, to date, in graphite itself, the writer is presently unaware of any experimental

observation of a BDT in this material. This is in contrast to Si, where the BDT is

well-established, as discussed by KPV and SHH. It is fair to add, in the above context,

first of all, that, as KPV write, ‘the . . .BDT is a classic phenomenon exhibited by almost

all materials . . . ’. Secondly, the present absence of observation of a BDT in graphite

may be due to its very high melting temperature Tm> 4000K, which will be discussed

a little further later. The rules relating TBDT and Tm quoted above (see also Appendix

3.2) then strongly suggest that TBDT may well lie between 2500 and 3000K in graphite

at atmospheric pressure (if indeed it exists in the material!).

4.3. Chemical interpretation of topological defects in graphene: pentagons and
heptagons at elevated temperatures

Returning to thermally generated defects, with graphite being built up from appropri-

ately stacked hexagonal planes of C atoms with interplanar van der Waals forces,

Klein and March [31: see also Klein [33,34]] have made a comprehensive characteriza-

tion of different possible rotation-dislocations in a single graphite sheet. There it is

pointed out that the picture put forward can be presented in terms of dislocations

first developing below TBDT and then dissociating into rotation-dislocations above

TBDT. Initially, dislocations can form via a local transformation from the undefective

lattice as pairs with opposite Burgers vectors. This is depicted in figures 1(a)

and (b) of Klein and March [31]. Then, as a result of further local transformations,

they can move apart. Each dislocation may be considered to be a positive-curvature

disclination (say as formed by a pentagonal ring in the graphene layer) and a

Table 2. Ratio of experimental values of monovacancy formation energy Ef
IV to

measured melting temperature Tm for eight close-packed metals (after [19]).

Element Ef
IV ðeVÞ Tm (K) Ef

IV=kBTm

Cu 1.31 1356 11.2
Ag 1.11 1234 10.4
Au 0.94 1336 8.2
Mg 0.89 923 11.2
Zn 0.54 693 9.0
Cd 0.36 594 7.6
Al 0.66 933 8.2
Pb 0.50 601 9.7

For these close-packed metals, experiment yields Ef
IV=kBTm ¼ 9.4� 1.8.
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negative-curvature dislocation (say as associated with a heptagonal ring), such that the
overall curvature of the dislocation is zero.

Klein and March [31] have also discussed in some detail the geometry associated
with thermally induced structural defects in silicon: we return very briefly to this
topic in section 5 immediately below.

5. Summary and possible future directions

Three widely different classes of chemically bonded materials have been treated in
the present study. Starting with molecular solids, the example of solid X(CH3)4:
X¼C, Si or Ge, was considered in some detail in section 2 and there can be little
doubt that the melting curve Tm( p) of this material under pressure is importantly
linked with a lower temperature phase boundary separating orientationally ordered
and disordered molecular assemblies in these tetramethyls.

For the future, it would be theoretically of importance to start from the Siringo
Hamiltonian [2] rather than the PK phenomenology based on equations (2.1) to (2.4)
above. However, analytic work may well then need complementing by extensive
computer simulation. Secondly, and again motivated by the example of solid
C(CH3)4 treated here, we want to emphasize the interest in other aspects of the
orientational order-disorder phase transition. One of these, which shows promise of
bridging two areas treated separately in the present study, is that of molecular nitrogen
physisorbed on graphite. Cooling below 30K, such an assembly is known to exhibit an
orientational phase transition [35; see also 36], and further theoretical studies here are
obviously highly worthwhile.

Turning to the second area, that of melting and mechanical properties of d-electron
transition metals, important regularities are emerging from two models [15,17] which
rest heavily on a mechanism of melting that is dislocation mediated. Their essential
shape, as emphasized here (see also [19]), is summarized in equations (3.1) and (3.2)
and a further consequence, of course approximate, is subsumed into equation (3.3),
which is now structure independent. It is important, for the future, to give careful
attention to getting the order of the melting transition correct: i.e. first-order, as it
seems unlikely that a model with solely dislocations can do that. But more urgently,
there is a need for much further work, both experimental and theoretical, on the
brittle-to-ductile transition in directionally bonded transition metals. One line of
progress would clearly be to follow the temperature of the BPT as a function of external
pressure, say in bcc metals like Nb and W. This is especially true now that there is
a lot of progress on the melting line under pressure (for theoretical progress,
see Appendix 5.1).

Last, but by no means least, the covalently bonded networks of graphite and silicon
deserve a lot more attention. Thus, while the melting line of graphite under pressure
was measured quite recently by Togoya [37], it seems a matter of importance to
decide experimentally whether there is a brittle-to-ductile transition in this sp2

bonded material and, if so, how TBDT changes under pressure. While such a transition
is well established in Si, to the knowledge of the writer there have been, to date,
no studies of the variation of TBDT in this sp3 bonded material with pressure and
that would seem now a matter of considerable importance.
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Notes added in Proof

1. Full details of the model presented in [25] are given in M. Khantha and V. Vitek.
Acta Mater., 45, 4675 (1997) and KPV: ibid 45, 4687.
2. The generalization of [25] to three dimensions, with inclusion of strain rate effects is
discussed by KPV in Mater. Sci. Eng. A319-21, 484 (2001). Observations of the BDT
temperature in several materials are also recorded there.
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Appendix 3.1: Models of monovacancy formation energy Ef
IV in terms of elastic constants

The purpose of this Appendix is to outline how other variables than the thermal
energy kMTm at melting might influence the monovacancy formation energy Ef

IV if
one wishes to understand more about the fluctuations around the mean value of the
ratio Ef

IV=kBTm. One indication in the main text that elastic constants might not
then be sufficient information is the pair potential formula (3.4) of Bhatia and
March [20]. That the bulk modulus B appears there (rather than the shear modulus
G that emerges from a glue model [23] transcending pair-wise interactions, which is
certainly required in d-electron directionally bonded transition metals) has already
been noted above.

As in section 3.1, appeal will be made to the properties of the liquid just above
the temperature Tm (compare equations (3.4) and (3.5)). To do this, let us invoke
thermodynamics and a Law going back to Joule. If E is the internal energy and
V the volume, the departure from Joule’s Law, which states that E is
independent of V, in the dense liquid resulting, say, from melting the close-packed
d-electron metals Pd and Pt, can be estimated from thermodynamics, via the pressure
equation

p ¼ �
@F

@V

� �
T

¼ �
@E

@V

� �
T

þT
@S

@V

� �
T

, ðA3:1:1Þ

in the customary thermodynamic notation. Using the Maxwell relation

@S

@V

� �
T

¼
@p

@T

� �
V

ðA3:1:2Þ

in equation (A3.1.1) gives immediately

@E

@V

� �
T

¼ T
@p

@T

� �
V

� p: ðA3:1:3Þ
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Using next the well-known formula for the specific heat difference cP� cV in terms of
the thermal expansion and compressibility, one reaches after a short calculation the
result [38]

cP � cV ¼ �
p

�kBT
þ

1

�kBT

@E

@V

� �
T

� �2
k2BTKT ðA3:1:4Þ

where � is here the atomic number density while KT is the isothermal compressibility
of the liquid. Recalling that for typical monoatomic liquids near the melting point,
p � �kBT, a quantitative expression for the departure from Joule’s Law is readily
extracted in the form

1

�kBT

@E

@V

� �
T

’
ð� � 1ÞcV=kB

Sð0Þ

� �1=2
ðA3:1:5Þ

where �¼ cP/cV, and KT has been written in terms of the long wavelength limit S(0)
of the liquid structure factor S(q), introduced in equation (3.5), using the relation of
fluctuation theory [22]

Sð0Þ ¼ �kBTKT: ðA3:1:6Þ

If, for convenience of presentation, we first invoke a pair potential �(r), to be then
corrected below, the internal energy of the liquid may be written, for �(r) assumed
density independent below, as

E ¼
3

2
NkBTþ

NP

2

Z
gðrÞ�ðrÞ dr ðA3:1:7Þ

where g(r) is, essentially, the Fourier transform of S(q). Using again the study of
Minchin et al. [21], one has for the vacancy formation energy

Ef
IV ¼ �

�

2

Z
gðrÞ�ðrÞ dr� kBT ðA3:1:8Þ

leading to the result

Ef
IV

kBTm
’

ð� � 1ÞðcV=kBÞ

Sð0Þ

� �1=2
Tm

ðA3:1:9Þ

where a (small) term involving the density derivative of the pair correlation function
g(r) in the liquid near Tm has been omitted.

The writer, in an attempt to transcend pair potential theory, has elsewhere pointed
out that, for transition metals such as Pd and Pt where glue models are required,
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one can use Johnson’s embedded atom results [23] to obtain a (weaker, of course)
inequality [39]

Ef
IV

kBTm
�

5

3

cV
kB

ð� � 1Þ1=2

J�

G�

kBTm
, ðA3:1:10Þ

where J is approximately constant. In the spirit of the correlations discussed in the body
of the text, between kBTm, G� and the monovacancy formation energy, equations
(A3.1.9) and (A3.1.10) indicate that refinements of such average predictions will involve
the ratio of specific heats � plus cV/kB also.

Appendix 3.2: Models relating brittle-to-ductile transition

temperature TBDT to melting temperature Tm at atmospheric pressure

In the body of the text, reference has been made to a rough empirical correlation
between TBDT and the melting temperature Tm. The purpose of this Appendix is to
compare and contrast two attempts which have been made to model TBDT.

The first of these, due to Argon [40], is a relation having the form

TBDT ¼ Aþ �
T0

Tm

� ��1

T0: ðA3:2:1Þ

The term A involves an activation energy, while � is a parameter describing the
temperature dependence of the shear modulus G. T0 also involves G together with
Poisson’s ratio and the atomic volume of the body-centred-cubic (bcc) metals with
which Argon was concerned. To compare with the second model, due to KPV [25],
it will be useful to rewrite equation (A3.2.1) in the equivalent form

1

TBDT
¼

1

T0
Aþ �

T0

Tm

� �
¼

�

Tm
þ

A

T0
ðA3:2:2Þ

Argon’s suggestion to take � ¼ 1
2 appears from equation (A3.2.2) to be the likely

reason why he found, for the example of ��Fe, TBDT>Tm, whereas empirically
TBDT¼ {275� 25}K and Tm¼ 1811K, while for another bcc metal W, TBDT¼

{400� 50}K with Tm¼ 3695K.
Let us now relate the general form in equation (A3.2.2) to that proposed from

the Kosterlitz-Thouless-like [26, 27] modelling of KPV [25]. Prompted by
equation (A3.2.2), we first take the inverse of the basic equation (6) of KPV [25].
Then we find, with � written for (kBTBDT)

�1

� ¼
8�ð1� �Þð1þ 	b2�r0=4Þ

G0b3½1� 2� expð��Ebþ 	b2�r0=2Þ�
ðA3:2:3Þ

Here, G0 denotes the shear modulus (in the absence of dislocations), b is the magni-
tude of the Burgers vector, while r0 and E represent respectively the core radius and
core energy of the dislocation. The final quantity, 	, appearing in equation (A3.3) is
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the shear stress acting on a slip plane which in KPV [25] is assumed for convenience to
be coincident with the crack plane.

The first point to stress in writing the inverse form (A3.2.3) is that �¼ 1/kBTBDT

has a scale measured by G0b
3, which is, apart from a geometrical factor, the shear

modulus times the atomic volume. Returning to equation (3.2), this factor relates, in
the dislocation-mediated model of melting, to the thermal energy kBTm associated
with Tm. However, according to equation (A3.2.3) this scaling is refined by a two-
parameter form, one of these parameters being the dimensionless combination 	b2�r0
and the other �Eb. Both of these quantities, however, involve � itself, i.e. (kBTBDT)

�1,
which one is seeking.

If � is small, corresponding to a high temperature, it is then tempting to simplify
equation (A3.2.3) to find (no doubt a rough approximation for real materials)
that kBTBDT ¼ G0b

3=8�ð1� �Þ / kBTm times a lattice structure-dependent constant.
If, on the other hand, it turns out that materials can be made for which
j�Ebj � 	b2�r0j2, then another limit of equation (A3.2.3) becomes

1

kBTBDT
1� 2�ð1� �Þ

	r0
G0b

� �
/

1

kBTm
: ðA:3:2:4Þ

It needs much fuller investigation before deciding whether either of the limiting cases
of equation (A3.2.3) discussed above has a range of validity relevant for real
materials. However, it may prove worthwhile, when further data is available for bcc
metals beyond that quoted above for ��Fe and W, to make a plot of 1/kBTBDT

versus 1/kBTm, bearing in mind the forms (A3.2.2) and (A3.2.4) above. In the
meantime, this Appendix should be viewed, for the d-electron transition metals,
as modelling in different ways the interconnection stressed in the title of this article
between melting temperature and a precursor cooperative phenomenon, namely
the BDT.

Appendix 5.1: On the pressure dependence of the melting curve Tm( p) in transition metals

and its relation to the shear modulus

We take as the starting point the formula of Ledbetter [41]. This relates the Debye
temperature 
D to the shear modulus G by


D ¼
C

�1=3

G

�

� �1=2

: ðA5:1Þ

Here, C is a constant, � the atomic volume while � denotes the density. Siethoff
and Ahlborn [42] verified Ledbetter’s result (A5.1) by applying it to a variety of
different systems.

Combining this relation (A5.1) with the melting criterion of Lindemann [16], one is
led to the relation (see also [18])

Gð�,Tmð�ÞÞ

�Tmð�Þ
¼

Gð�refTmð�refÞÞ

�refTmð�refÞ
, ðA5:2Þ

where �ref denotes a chosen reference density.
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Because of the focus of the present result on relating melting temperature of
chemically bonded solids to precursor collective phenomena, we note that
Burakovsky and Preston [43] in very recent work have calculated the melting curves
Tm(�) of two d-electron transition metals, namely Pd and Pt. Their results are
redrawn in figure A1, the upper panel (a) being appropriate for Pd and (b) for Pt.
Comparison they were able to make with experiment shows that these curves
represent a good average fit of the presently available measurements.

We note briefly that Burakovsky and Preston [43] model the density dependence of
the Gruneisen parameter � as

�ð�Þ ¼
1

2
þ

�1
�1=3

þ
�2
�q

, ðA5:3Þ

Figure A1. Shows melting curves under pressure of two d-electron transition metals: (a) Pd and (b) Pt.
[Redrawn from Burakovsky and Preston [43].]
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where �1, �2 and q(>1) are constants. The form (A5.3) was designed to represent
quantitatively the experimentally determined low-pressure form of �, the constants
in equation (A5.3) being obtained for some twenty elemental solids. Using the
Lindemann criterion with the model form of � in equation (A5.3), Burakovsky and
Preston calculated melting curves as a function of density for five solids, and
figure A1 shown above represents a sample of their results, redrawn from their
figures 4 and 5 [43].

One can therefore have confidence that if the temperature TBDT( p) as a function of
pressure p can be measured subsequently on one or more d-electron transition metals,
complementary data can be set up for the melting curve Tm( p) (compare section 3.2
of the body of the text).
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